FCM-Based Model Selection Algorithms for Determining the Number of Clusters
نویسندگان
چکیده
Clustering is an important research topic that has practical applications in many 5elds. It has been demonstrated that fuzzy clustering, using algorithms such as the fuzzy C-means (FCM), has clear advantages over crisp and probabilistic clustering methods. Like most clustering algorithms, however, FCM and its derivatives need the number of clusters in the given data set as one of their initializing parameters. The main goal of this paper is to develop an e;ective fuzzy algorithm for automatically determining the number of clusters. After a brief review of the relevant literature, we present a new algorithm for determining the number of clusters in a given data set and a new validity index for measuring the “goodness” of clustering. Experimental results and comparisons are given to illustrate the performance of the new algorithm. ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
An Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملارایه شاخصی جدید جهت سنجش اعتبار خوشه بندی در الگوریتم های خوشه بندی فازی نوع-2
One of the main issues in fuzzy clustering is to determine the number of clusters that should be available before clustering and selection of different values for the number of clusters will lead to different results. Then, different clusters obtained from different number of clusters should be validated with an index. But so far such an index has not been introduced for interval type-2 fuzzy C...
متن کاملOil Reservoirs Classification Using Fuzzy Clustering (RESEARCH NOTE)
Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by...
متن کاملData Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 37 شماره
صفحات -
تاریخ انتشار 2004